Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | g5+g−3 | −h5+2h3 | g3+g−5 | g23 | g12+g4 | g18 | g21 | g13 | g16 | g19 |
weight | 0 | 0 | 0 | 2ω2 | 2ω3 | ω2+2ω3 | ω2+2ω3 | 4ω3 | 4ω3 | 4ω3 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −4ψ | 0 | 4ψ | 2ω2 | 2ω3 | ω2+2ω3−2ψ | ω2+2ω3+2ψ | 4ω3−4ψ | 4ω3 | 4ω3+4ψ |
Isotypical components + highest weight | V−4ψ → (0, 0, 0, -4) | V0 → (0, 0, 0, 0) | V4ψ → (0, 0, 0, 4) | V2ω2 → (0, 2, 0, 0) | V2ω3 → (0, 0, 2, 0) | Vω2+2ω3−2ψ → (0, 1, 2, -2) | Vω2+2ω3+2ψ → (0, 1, 2, 2) | V4ω3−4ψ → (0, 0, 4, -4) | V4ω3 → (0, 0, 4, 0) | V4ω3+4ψ → (0, 0, 4, 4) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | 2ω3 0 −2ω3 | ω2+2ω3 ω1−ω2+2ω3 ω2 −ω1+ω2+2ω3 ω1−ω2 ω2−2ω3 −ω2+2ω3 −ω1+ω2 ω1−ω2−2ω3 −ω2 −ω1+ω2−2ω3 −ω2−2ω3 | ω2+2ω3 ω1−ω2+2ω3 ω2 −ω1+ω2+2ω3 ω1−ω2 ω2−2ω3 −ω2+2ω3 −ω1+ω2 ω1−ω2−2ω3 −ω2 −ω1+ω2−2ω3 −ω2−2ω3 | 4ω3 2ω3 0 −2ω3 −4ω3 | 4ω3 2ω3 0 −2ω3 −4ω3 | 4ω3 2ω3 0 −2ω3 −4ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −4ψ | 0 | 4ψ | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | 2ω3 0 −2ω3 | ω2+2ω3−2ψ ω1−ω2+2ω3−2ψ ω2−2ψ −ω1+ω2+2ω3−2ψ ω1−ω2−2ψ ω2−2ω3−2ψ −ω2+2ω3−2ψ −ω1+ω2−2ψ ω1−ω2−2ω3−2ψ −ω2−2ψ −ω1+ω2−2ω3−2ψ −ω2−2ω3−2ψ | ω2+2ω3+2ψ ω1−ω2+2ω3+2ψ ω2+2ψ −ω1+ω2+2ω3+2ψ ω1−ω2+2ψ ω2−2ω3+2ψ −ω2+2ω3+2ψ −ω1+ω2+2ψ ω1−ω2−2ω3+2ψ −ω2+2ψ −ω1+ω2−2ω3+2ψ −ω2−2ω3+2ψ | 4ω3−4ψ 2ω3−4ψ −4ψ −2ω3−4ψ −4ω3−4ψ | 4ω3 2ω3 0 −2ω3 −4ω3 | 4ω3+4ψ 2ω3+4ψ 4ψ −2ω3+4ψ −4ω3+4ψ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−4ψ | M0 | M4ψ | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | M2ω3⊕M0⊕M−2ω3 | Mω2+2ω3−2ψ⊕M−ω1+ω2+2ω3−2ψ⊕Mω1−ω2+2ω3−2ψ⊕M−ω2+2ω3−2ψ⊕Mω2−2ψ⊕M−ω1+ω2−2ψ⊕Mω1−ω2−2ψ⊕M−ω2−2ψ⊕Mω2−2ω3−2ψ⊕M−ω1+ω2−2ω3−2ψ⊕Mω1−ω2−2ω3−2ψ⊕M−ω2−2ω3−2ψ | Mω2+2ω3+2ψ⊕M−ω1+ω2+2ω3+2ψ⊕Mω1−ω2+2ω3+2ψ⊕M−ω2+2ω3+2ψ⊕Mω2+2ψ⊕M−ω1+ω2+2ψ⊕Mω1−ω2+2ψ⊕M−ω2+2ψ⊕Mω2−2ω3+2ψ⊕M−ω1+ω2−2ω3+2ψ⊕Mω1−ω2−2ω3+2ψ⊕M−ω2−2ω3+2ψ | M4ω3−4ψ⊕M2ω3−4ψ⊕M−4ψ⊕M−2ω3−4ψ⊕M−4ω3−4ψ | M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3 | M4ω3+4ψ⊕M2ω3+4ψ⊕M4ψ⊕M−2ω3+4ψ⊕M−4ω3+4ψ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−4ψ | M0 | M4ψ | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | M2ω3⊕M0⊕M−2ω3 | Mω2+2ω3−2ψ⊕M−ω1+ω2+2ω3−2ψ⊕Mω1−ω2+2ω3−2ψ⊕M−ω2+2ω3−2ψ⊕Mω2−2ψ⊕M−ω1+ω2−2ψ⊕Mω1−ω2−2ψ⊕M−ω2−2ψ⊕Mω2−2ω3−2ψ⊕M−ω1+ω2−2ω3−2ψ⊕Mω1−ω2−2ω3−2ψ⊕M−ω2−2ω3−2ψ | Mω2+2ω3+2ψ⊕M−ω1+ω2+2ω3+2ψ⊕Mω1−ω2+2ω3+2ψ⊕M−ω2+2ω3+2ψ⊕Mω2+2ψ⊕M−ω1+ω2+2ψ⊕Mω1−ω2+2ψ⊕M−ω2+2ψ⊕Mω2−2ω3+2ψ⊕M−ω1+ω2−2ω3+2ψ⊕Mω1−ω2−2ω3+2ψ⊕M−ω2−2ω3+2ψ | M4ω3−4ψ⊕M2ω3−4ψ⊕M−4ψ⊕M−2ω3−4ψ⊕M−4ω3−4ψ | M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3 | M4ω3+4ψ⊕M2ω3+4ψ⊕M4ψ⊕M−2ω3+4ψ⊕M−4ω3+4ψ |