Processing math: 100%
Subalgebra B12+A81C15
84 out of 119
Computations done by the calculator project.

Subalgebra type: B12+A81 (click on type for detailed printout).
Subalgebra is (parabolically) induced from B12 .
Centralizer: A31 .
The semisimple part of the centralizer of the semisimple part of my centralizer: B12+A81
Basis of Cartan of centralizer: 1 vectors: (0, 0, 2, 0, -1)
Contained up to conjugation as a direct summand of: B12+A81+A31 .

Elements Cartan subalgebra scaled to act by two by components: B12: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, A81: (0, 0, 4, 8, 4): 16
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: g25, g1, g4+g12
Positive simple generators: g25, g1, 2g12+2g4
Cartan symmetric matrix: (210110001/4)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2202400016)
Decomposition of ambient Lie algebra: 3V4ω32Vω2+2ω3V2ω3V2ω23V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω3+4ψVω2+2ω3+2ψV4ψV4ω3V2ω3V2ω2Vω2+2ω32ψV0V4ω34ψV4ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra.g5+g3h5+2h3g3+g5g23g12+g4g18g21g13g16g19
weight0002ω22ω3ω2+2ω3ω2+2ω34ω34ω34ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ04ψ2ω22ω3ω2+2ω32ψω2+2ω3+2ψ4ω34ψ4ω34ω3+4ψ
Isotypic module decomposition over primal subalgebra (total 10 isotypic components).
Isotypical components + highest weightV4ψ → (0, 0, 0, -4)V0 → (0, 0, 0, 0)V4ψ → (0, 0, 0, 4)V2ω2 → (0, 2, 0, 0)V2ω3 → (0, 0, 2, 0)Vω2+2ω32ψ → (0, 1, 2, -2)Vω2+2ω3+2ψ → (0, 1, 2, 2)V4ω34ψ → (0, 0, 4, -4)V4ω3 → (0, 0, 4, 0)V4ω3+4ψ → (0, 0, 4, 4)
Module label W1W2W3W4W5W6W7W8W9W10
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g5+g3
Cartan of centralizer component.
h5+2h3
g3+g5
Semisimple subalgebra component.
g23
g24
g1
2g25
2h1
2h5+4h4+4h3+4h2+4h1
2g25
2g1
2g24
4g23
Semisimple subalgebra component.
g12g4
2h5+4h4+2h3
g4+g12
g18
g20
g15
g10
g17
g2
g7
g14
g6
g11
g22
g21
g21
g22
g11
g6
g14
g7
g2
g17
g10
g15
g20
g18
g13
g9
2g5g3
3g8
6g19
g16
g12g4
2h52h3
3g43g12
6g16
g19
g8
g32g5
3g9
6g13
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0002ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
2ω3
0
2ω3
ω2+2ω3
ω1ω2+2ω3
ω2
ω1+ω2+2ω3
ω1ω2
ω22ω3
ω2+2ω3
ω1+ω2
ω1ω22ω3
ω2
ω1+ω22ω3
ω22ω3
ω2+2ω3
ω1ω2+2ω3
ω2
ω1+ω2+2ω3
ω1ω2
ω22ω3
ω2+2ω3
ω1+ω2
ω1ω22ω3
ω2
ω1+ω22ω3
ω22ω3
4ω3
2ω3
0
2ω3
4ω3
4ω3
2ω3
0
2ω3
4ω3
4ω3
2ω3
0
2ω3
4ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ04ψ2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
2ω3
0
2ω3
ω2+2ω32ψ
ω1ω2+2ω32ψ
ω22ψ
ω1+ω2+2ω32ψ
ω1ω22ψ
ω22ω32ψ
ω2+2ω32ψ
ω1+ω22ψ
ω1ω22ω32ψ
ω22ψ
ω1+ω22ω32ψ
ω22ω32ψ
ω2+2ω3+2ψ
ω1ω2+2ω3+2ψ
ω2+2ψ
ω1+ω2+2ω3+2ψ
ω1ω2+2ψ
ω22ω3+2ψ
ω2+2ω3+2ψ
ω1+ω2+2ψ
ω1ω22ω3+2ψ
ω2+2ψ
ω1+ω22ω3+2ψ
ω22ω3+2ψ
4ω34ψ
2ω34ψ
4ψ
2ω34ψ
4ω34ψ
4ω3
2ω3
0
2ω3
4ω3
4ω3+4ψ
2ω3+4ψ
4ψ
2ω3+4ψ
4ω3+4ψ
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψM0M4ψM2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2M2ω3M0M2ω3Mω2+2ω32ψMω1+ω2+2ω32ψMω1ω2+2ω32ψMω2+2ω32ψMω22ψMω1+ω22ψMω1ω22ψMω22ψMω22ω32ψMω1+ω22ω32ψMω1ω22ω32ψMω22ω32ψMω2+2ω3+2ψMω1+ω2+2ω3+2ψMω1ω2+2ω3+2ψMω2+2ω3+2ψMω2+2ψMω1+ω2+2ψMω1ω2+2ψMω2+2ψMω22ω3+2ψMω1+ω22ω3+2ψMω1ω22ω3+2ψMω22ω3+2ψM4ω34ψM2ω34ψM4ψM2ω34ψM4ω34ψM4ω3M2ω3M0M2ω3M4ω3M4ω3+4ψM2ω3+4ψM4ψM2ω3+4ψM4ω3+4ψ
Isotypic characterM4ψM0M4ψM2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2M2ω3M0M2ω3Mω2+2ω32ψMω1+ω2+2ω32ψMω1ω2+2ω32ψMω2+2ω32ψMω22ψMω1+ω22ψMω1ω22ψMω22ψMω22ω32ψMω1+ω22ω32ψMω1ω22ω32ψMω22ω32ψMω2+2ω3+2ψMω1+ω2+2ω3+2ψMω1ω2+2ω3+2ψMω2+2ω3+2ψMω2+2ψMω1+ω2+2ψMω1ω2+2ψMω2+2ψMω22ω3+2ψMω1+ω22ω3+2ψMω1ω22ω3+2ψMω22ω3+2ψM4ω34ψM2ω34ψM4ψM2ω34ψM4ω34ψM4ω3M2ω3M0M2ω3M4ω3M4ω3+4ψM2ω3+4ψM4ψM2ω3+4ψM4ω3+4ψ

Semisimple subalgebra: W_{4}+W_{5}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (300.00, 350.00)
1: (0.00, 1.00, 0.00, 0.00): (250.00, 350.00)
2: (0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 206640 arithmetic operations while solving the Serre relations polynomial system.